Amiloride‐sensitive fluid resorption in NCI‐H441 lung epithelia depends on an apical Cl− conductance

نویسندگان

  • Jonas P. Korbmacher
  • Christiane Michel
  • Daniel Neubauer
  • Kristin Thompson
  • Boris Mizaikoff
  • Manfred Frick
  • Paul Dietl
  • Oliver H. Wittekindt
چکیده

Proper apical airway surface hydration is essential to maintain lung function. This hydration depends on well-balanced water resorption and secretion. The mechanisms involved in resorption are still a matter of debate, especially as the measurement of transepithelial water transport remains challenging. In this study, we combined classical short circuit current (I SC) measurements with a novel D2O dilution method to correlate ion and water transport in order to reveal basic transport mechanisms in lung epithelia. D2O dilution method enabled precise analysis of water resorption with an unprecedented resolution. NCI-H441 cells cultured at an air-liquid interface resorbed water at a rate of 1.5 ± 0.4 μL/(h cm(2)). Water resorption and I SC were reduced by almost 80% in the presence of the bulk Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) or amiloride, a specific inhibitor of epithelial sodium channel (ENaC). However, water resorption and I SC were only moderately affected by forskolin or cystic fibrosis transmembrane regulator (CFTR) channel inhibitors (CFTRinh-172 and glybenclamide). In line with previous studies, we demonstrate that water resorption depends on ENaC, and CFTR channels have only a minor but probably modulating effect on water resorption. However, the major ENaC-mediated water resorption depends on an apical non-CFTR Cl(-) conductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AICAR decreases the activity of two distinct amiloride-sensitive Na+-permeable channels in H441 human lung epithelial cell monolayers

Transepithelial transport of Na(+) across the lung epithelium via amiloride-sensitive Na(+) channels (ENaC) regulates fluid volume in the lung lumen. Activators of AMP-activated protein kinase (AMPK), the adenosine monophosphate mimetic AICAR, and the biguanide metformin decreased amiloride-sensitive apical Na(+) conductance (G(Na+)) in human H441 airway epithelial cell monolayers. Cell-attache...

متن کامل

Alveolar Epithelial Ion and Fluid Transport -Adrenoceptor-mediated control of apical membrane conductive properties in fetal distal lung epithelia

Collett, A., S. J. Ramminger, R. E. Olver, and S. M. Wilson. -Adrenoceptor-mediated control of apical membrane conductive properties in fetal distal lung epithelia. Am J Physiol Lung Cell Mol Physiol 282: L621–L630, 2002. First published October 26, 2001; 10.1152/ajplung.00142.2001.— Distal lung epithelial cells isolated from fetal rats were cultured (48 h) on permeable supports so that transep...

متن کامل

cAMP-induced changes of apical membrane potentials of confluent H441 monolayers.

We recorded apical membrane potentials (Va) of H441 cells [a human lung cell line exhibiting both epithelial Na+ (ENaC) and CFTR-type channels] grown as confluent monolayers, using the microelectrode technique in current-clamp mode before, during, and after perfusion of the apical membranes with 10 microM forskolin. When perfused with normal Ringer solution, the cells had a Va of -43 +/- 10 mV ...

متن کامل

Cl-channel activation is necessary for stimulation of Na transport in adult alveolar epithelial cells.

In this review, we discuss evidence that supports the hypothesis that adrenergic stimulation of transepithelial Na absorption across the alveolar epithelium occurs indirectly by activation of apical Cl channels, resulting in hyperpolarization and an increased driving force for Na uptake through amiloride-sensitive Na channels. This hypothesis differs from the prevailing idea that adrenergic-rec...

متن کامل

A regulated apical Na(+) conductance in dexamethasone-treated H441 airway epithelial cells.

Treating H441 cells with dexamethasone raised the abundance of mRNA encoding the epithelial Na(+) channel alpha- and beta-subunits and increased transepithelial ion transport (measured as short-circuit current, I(sc)) from <4 microA.cm(-2) to 10-20 microA.cm(-2). This dexamethasone-stimulated ion transport was blocked by amiloride analogs with a rank order of potency of benzamil >or= amiloride ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014